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Abstract: Given the importance of soil moisture for hydrological applications, including weather and 
flood forecasting, the Soil Moisture and Ocean Salinity (SMOS) mission was launched by the European 
Space Agency in 2009. This first-ever dedicated global soil moisture mapping mission has a target accuracy 
of 0.04 v/v. The passive microwave remote sensing approach has been adopted for this mission due to its 
high sensitivity to near-surface soil moisture, applicability to all weather conditions, direct correlation with 
the soil dielectric constant, and reduced effects by vegetation and roughness. However, passive microwave 
(radiometer) observations suffer from being relatively low spatial resolution, on the order of 40 km. It is 
proposed that this scale issue may be overcome by using active microwave (radar) observations, and this is 
the approach being taken by NASA’s   Soil Moisture Active Passive (SMAP) mission, with a scheduled 
launch in late 2014. The rationale behind SMAP is that the synergy between active and passive observations 
can be used in a downscaling approach to overcome the individual limitations of each observation type, and 
ultimately provide a soil moisture data set at intermediate resolution (~10 km). The objective of this study is 
to test an existing downscaling approach, which has thus far received very limited testing, using airborne and 
satellite data, thus analyzing its viability for application.  

The downscaling approach tested in this paper is based on an observed near-linear relationship between 
active and passive observations, and theoretically proven to be an effective method. The rationale is to 
downscale low resolution (40 km) brightness temperature (Tb) to an intermediate resolution using high 
resolution (1 km) radar backscatter (σ), with soil moisture retrieval subsequently applied to the downscaled 
brightness temperature data. There are three components to this study: i) preliminary estimation of a slope 
parameter BC from a regression analysis of time-series Tb  and  σ data at 40 km resolution; ii) merging coarse 
resolution Tb and high  resolution  σ  using  a linear function with the slope BC; and iii) validate the downscaled 
Tb with airborne data. In this application, data from the C-band Advanced Synthetic Aperture Radar (ASAR) 
with approximately 1 km resolution are used to downscale L-band SMOS Tb data at the 40° incidence angle. 
The downscaled results are then evaluated using airborne Tb collected at 1 km resolution within the 
framework of the Soil Moisture Active Passive Experiments (SMAPEx) project over a 40 km × 40km area in 
south-eastern Australia.     

Results show that the Root-Mean-Square Error (RMSE) in Tb at 1 km resolution downscaled using SMOS 
and ASAR is 11.7 K at h-polarization and 10.3 K at v-polarization, respectively.  When downscaled to 10 km 
resolution, the RMSE is reduced to 7.8 K and 6.9 K, respectively, showing an improvement in the RMSE of 
~4 K. However, both results have errors larger than desired. This is mainly due to the ASAR_GM mode only 
being available in hh-polarization, while it has been shown that the best results from applying this 
downscaling algorithm can be expected from radar observations at vv-polarization. Some other reasons for 
such a result when using ASAR data may include: i) it is C-band that is more affected by vegetation, ii) the 
instrument is relatively noisy in Global Mode, iii) the incidence angle of the normalized backscatter is 30° 
rather than 40°. In addition, the SMOS data are relatively noisy (6 K-7 K) compared to that expected from 
SMAP (1.3K), and there is an offset in the overpass time of ASAR and SMOS of approximately 6 hrs. 
However, applying this downscaling algorithm similar to that being developed for SMAP shows little 
potential for the downscaling of SMOS with ASAR_GM data, unless the parameter BC, which was 
considered to be constant within the entire SMAPEx domain, can be derived at sub SMOS pixel scale. 
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1. INTRODUCTION 

Soil moisture is of great importance to global water cycle monitoring and prediction, especially in 
agriculture, hydrology and meteorology (Wagner et al. 2003). With the development of remote sensing 
technology (Schmugge et al. 2002), soil moisture mapping is becoming much easier and more accurate over 
large areas when compared with traditional monitoring by in situ networks of stations. Consequently, 
methods are being developed to make use of this emerging soil moisture information to constrain numerical 
model prediction of soil moisture (Shi et al. 2009), and hence improve the forecasting of weather and floods, 
leading to significant national benefit. 

Over the past decade, passive microwave remote sensing has become generally accepted as the most accurate 
approach for soil moisture mapping, due to its stronger and more direct connection between the observed 
brightness temperature (Tb) and the surface soil moisture (~5cm), than with active microwave sensing (radar 
backscatter) or thermal data (Kerr 2007). The best results were found at low frequency (~1.4 GHz) due to the 
reduced effects by the atmosphere, surface roughness and vegetation attenuation, and the increased 
observation depth. Consequently, the Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al. 2010) 
was launched by the European Space Agency in 2009, as the first satellite dedicated to soil moisture 
measurement using L-band. Despite the high sensitivity of this passive microwave radiometer approach to 
near-surface soil moisture monitoring, it suffers from its relatively low spatial resolution, which is on the 
order of 40 km. Since active microwave observations (despite being less sensitive to changes in soil moisture 
due to the confounding effects of vegetation and surface roughness) have a much higher spatial resolution, 
NASA is developing the Soil Moisture Active Passive (SMAP) mission (Entekhabi et al. 2010) scheduled to 
be launched in Nov 2014. The rationale behind SMAP is that the synergy between active and passive 
observations can be used in a downscaling approach to overcome the individual limitations of each 
observation, ultimately providing a soil moisture data set at resolutions deemed suitable for hydro-
meteorological applications (~10 km). 

One of the proposed downscaling method to be applied in the SMAP mission is based on the assumed near-
linear relationship between radar backscatter   (σ) and radiometer brightness temperature (Tb), and has been 
proven as an effective method using the airborne Passive and Active L-band System (PALS) instrument 
dataset collected during the Soil Moisture Experiments, 2002 (SMEX'02; Das et al. 2011). Other methods, 
such as the Bayesian merging algorithm (Zhan et al. 2006) and the optical downscaling method (Merlin et al. 
2008) have also shown great potential in downscaling. While the Bayesian merging method is yet to be 
demonstrated with real data, the optical approach can only be applied under non-cloudy conditions and 
requires land surface models with a wide range of ancillary data. Consequently, the objective of this paper is 
to evaluate the effectiveness of the linear brightness temperature downscaling method with radar backscatter, 
using L-band operational radiometer (SMOS) and C-band radar (ASAR) data. 

2. DATA

The Soil Moisture Active Passive Experiments (SMAPEx; Monerris et al. 2011) field site and data sets have 
been chosen for testing the downscaling performance. The SMAPEx study site (-34.67°N, -35.01°N, 
145.97°E, 146.36°E) in Figure 1 aims to simulate 
data from the SMAP mission, including a 
SMOS/SMAP sized radiometer footprint 
(approximately 40 km × 40km) over landscape 
typical of south-eastern Australia. The SMAPEx data 
were collected using a new airborne remote sensing 
capability which allows undertaking high resolution 
active and passive microwave remote sensing at L-
band similar to those expected from SMAP. The 
facility includes the Polarimetric L-band Multibeam 
Radiometer (PLMR) and the Polarimetric L-band 
Imaging Scatterometer (PLIS) which, when used 
together on the same aircraft, allow the simulation of 
SMAP data. SMAPEx comprises a total of three 
campaigns undertaken over a one year timeframe 
(winter, summer, and crop growing season). The data 
of PLMR used in this study are collected in the first 
campaign (5-10 July in 2010).  

Figure 1. SMAPEx study area, south-eastern 
Australia: approximately 40 km × 40 km in size. 
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The reprocessed L-band Level 1C brightness temperature product of SMOS has an average resolution of 40 
km on a resampled 15km grid, while the C-band backscatter dataset from ASAR is available at 1 km 
resolution. The ASAR data are often available for the same day as SMOS overpasses, and are therefore used 
as input data for executing the downscaling procedure tested here. Subsequently, the airborne PLMR data 
from the SMAPEx field campaign are used as the reference Tb data at high (1 km) spatial resolution, having 
an accuracy estimated to be better than 1 K at h-polarization and 2.5 K at v-polarization (Panciera 2009). The 
PLMR data are therefore used to evaluate the downscaled Tb and hence the effectiveness of the downscaling 
algorithm when using ASAR data together with data from SMOS at 40° incidence angle, thus testing the 
viability of this downscaling method in future applications, both in the context of downscaling SMOS and in 
preparation for SMAP. 

As the radar and radiometer sensors are onboard different satellites, coincident overpasses of the SMAPEx 
study area for each satellite were first identified. For the purpose of establishing a linear regression between 
Tb and backscatter, all available data were searched for coincident SMOS and ASAR overpasses having full 
coverage over the SMAPEx study area (regardless of the presence of coincident PLMR validation data). 
However, for the sake of validating the downscaled Tb, only SMOS/ASAR overpasses coincident with 
PLMR flights could be used.  

Concurrent dates for the two satellites are listed in 
Table 1. The 6th July and 10th July are therefore the 
only dates that could be used to validate the viability 
of the downscaling algorithm. Any potential 
limitation due to the available dates will be discussed 
later. The standard deviation of SMOS observations 
with their center point falling within the 40 km 
SMAPEx area at 40° incidence angle ranged from 
1.1 to 6.9 K depending on the date and polarization, 
while the standard deviation of aggregated ASAR 
data coincident with the SMOS pixels ranged from 
0.07 to 0.27 dB. The mean and standard deviation 
for SMOS and ASAR data are shown in Figure 2. 
Since the values of PLMR are influenced by physical temperature and incidence angle variations across the 
flight, the PLMR data have been normalized to a 40° incidence angle and temperature corrected to the 
effective temperature of 20:30pm (in UTC; average 
overpass time of SMOS) following the methodology 
of Jackson (2001). Moreover, there is a warm bias in 
SMOS as compared to PLMR data averaged over the 
same footprint, being approximately 11.5 K at h-pol 
and 8.5 K at v-pol when assessed over the 
Murrumbidgee catchment (Rüdiger et al. 2011). 
Consequently, SMOS data were de-biased with 
respect to PLMR data for the purpose of cross-
validating the downscaled Tb, and hence the de-
biased SMOS data are used in this study for 
downscaling. 

3. METHODOLOGY 

The downscaling method used in this paper is based 
on a linear relationship between active and passive 
observations at the same scale (Das et al. 2011), with 
a rationale of merging high-accuracy but coarse-
resolution passive microwave observations of Tb 
with low accuracy but fine resolution active 
microwave observations of   σ, to ultimately obtain 
the downscaled Tb both at h-pol and v-pol at a medium resolution. In the following the naming convention of 
‘C’  (coarse),  ‘F’  (fine),  and  ‘M’  (medium)   is used for the SMOS L1C_Tb (40 km),  ASAR  backscatter  σ (1 
km), and downscaled Tb grid scales (1 to 10 km), respectively.  Implementation of this method first requires 
a linear regression of the available data to derive the coefficients of the relationship  

 Tbp,C=AC+BC ×  σpp, C ,       (1) 

Table 1: Available coincident overpasses of 
SMOS and ASAR in 2010; dates in green are 

additionally concurrent with PLMR 
Season Month Dates ( in UTC) 

Summer January 29 

February 11 14 17 

Winter July 06 10 23 26 28 

August 05 08 10 13 26 

September 15 20 

 

Figure 2. Scatter plot between ASAR σhh and 
SMOS Tbh/Tbv in SMAPEx area in winter and in 

summer: four solid colored lines are the fits in 
each season at each pol; two dashed black lines 

are fits across a year at each pol; two dashed 
colored lines are calibrated fits in winter. 
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where p indicates the polarization of Tb, including h- and v-pol; pp means co-polarization of radar 
observations σ, including hh or vv-pol. Correlations between 4 different combinations of Tbp and  σpp have 
been analyzed (Das et al. 2011). From that study σvv is expected to correlate best with Tb at both h and v-pol 
than  σhh. However, ASAR backscatter is only available at hh-pol and is thus used to downscale SMOS data in 
this paper. In addition, the study of Das et al. (2011) showed that Tb at v-pol rather than at h-pol is expected 
to have a higher degree of correlation with σhh. The influence of this polarization limitation from ASAR will 
be illustrated in the results. The value for σpp, C is obtained by aggregating 1 km resolution ASAR within the 
coarse footprint C (in dB), with Tbp,C directly from the SMOS L1C product (in K). At a given scale, 
parameters AC and BC, which in reality depend on vegetation cover and type as well as surface roughness, are 
assumed time-invariant and homogenous over the entire SMAPEx area in this paper. Therefore, those two 
parameters at scale C can be estimated by using SMOS L1C_Tb  and  ASAR  σhh data time-series. 

In order to downscale to scale F, (1) can be written as 

Tbp,F=AF+BF ×    σpp, F ,      (2) 

where Tbp,F is the brightness temperature value  at  a  spatial  scale  of  F  for  a  particular  pixel  within  C,  and  σpp, F 
is the corresponding backscatter value from the ASAR. While the default implementation of this algorithm 
assumes that A and B are homogeneous within C, in reality it is likely that they vary spatially as a result of 
different vegetation types and land management practices among others. In this case AF and BF have the same 
values as AC and BC. By averaging both sides of (2), one obtains 

<Tbp,F>=<AF>+<BF>  ×  <  σpp, F > ,    (3) 

Here < > is used to indicate averaging across C, which yields <Tbp,F>= Tbp,C, as each smaller pixel within C 
shares the same value of SMOS Tb at that scale. Subtracting (3) from (2), and considering A and B are 
homogeneous and therefore equal at each scale, the downscaled Tb at scale F can be obtained as 

Tbp,F= Tbp,C +BC ×  (σpp, F - σpp, C) ,    (4) 

Using (4) the downscaled Tb is obtained for each pixel in the SMAPEx area at 1 km, 4 km and 10 km 
resolution, by averaging the ASAR data at 1 km resolution. Clearly, the downscaled Tb at fine resolution is 
heavily dependent on the quality of the SMOS Tb, the relative backscatter difference within the coarse grid, 
and the relationship with Tb as represented by the regression slope that are added to the background value. 

The downscaled results at different resolutions are evaluated by comparing them with PLMR Tb data at 1 
km, 4 km, and 10 km resolution, respectively, in order to assess the merit of this downscaling method in 
preparation for SMAP and its potential application to SMOS and ASAR. However, it should be noted that 
this downscaling algorithm differs from that being developed for SMAP due to limitations in the ASAR data. 
Specifically, it does not make use of cross-polarized backscatter data that has been shown to account for land 
management variability (Das et al. 2011). 

4. RESULTS 

Given the hypothesis of a time-invariant and homogeneous BC across the SMAPEx area, the time series of 
SMOS Tb and ASAR σ  were used to estimate BC, using 4 days from summer, together with 12 days from 
winter (see Table 1).  The parameter BC (with the unit of K/dB) was determined to be -9.68 at h-pol and -9.43 
at v-pol (dashed lines in Figure 2) and subsequently applied to the proposed downscaling algorithm for the 
SMOS and ASAR data on 6th and 10th July. When comparing with PLMR Tb, the RMSE of downscaled Tb 
at 1 km resolution is 22.1 K at h-pol, and 19.7 K at v-pol on 6th July. Subsequently, BC was estimated 
separately for each season, thus reducing the time invariance assumption to a few weeks. In austral summer, 
a 4-day time series of SMOS and ASAR data (29th Jan., 11th Feb., 14th Feb., 17th Feb.) has been utilized to 
perform a linear regression, while in winter a 5-day time series (in July) has been used. In this case, BC is 
3.11 at h-pol and 1.05 at v-pol in winter, and 0.89 at h-pol and 0.62 at v-pol in summer, being significantly 
different from the previous estimates of BC when using data in summer and winter together, see Figure 2. 
Accordingly, applying BC obtained from the time series in winter to perform downscaling on days 6th and 10th 
July, resulted in a RMSE of 12.8 K at h-pol and 10.5 K at v-pol on 6th July, being an improvement of ~10 K 
over the previous result. 

These results suggest that BC is time-variant with considerable difference according to season, and significant 
impact on the resultant retrieval of downscaled Tb. Further analysis of BC is of great importance to control 
the accuracy of downscaled Tb. The variation of BC in a smaller area than SMAPEx was therefore analysed. 
This was achieved by dividing the SMAPEx area into sixteen 10km × 10km areas and retrieving BC from 
time-series SMOS (10 km) and ASAR (10 km) data over each area. According to the results in Figure 3, the 
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ID of each pixel is labelled starting from the top left corner, and moving sequentially across the study area 
(Figure 1) from west to east, followed by north to 
south. The value of BC clearly varies across study site, 
mainly because the left part of SMAPEx is 
dominated by cropping area , while the right part is 
mostly grazing (less irrigation), suggesting that the 
hypothesis of a constant BC (dashed lines in Figure 3) 
over the radiometer pixel may result in poor 
estimates of downscaled Tb. A summary of the 
RMSE of downscaled Tb derived from de-biased 
SMOS and ASAR data is shown in Table 2, together 
with the comparison between de-biased SMOS Tb 
data and aggregated PLMR data (at 40 km 
resolution). 

In order to eliminate any residual bias or   “noise/error”   in   the   SMOS   data   as   compared   to   PLMR over 
SMAPEx on the specific downscaling date, estimates of SMOS observations were then obtained from 
aggregating the 1 km PLMR data directly.  

Table 2. Difference between de-biased SMOS and aggregated PLMR data, and RMSE of downscaled Tb 
Date Polarization PLMR Tb (K)     De-biased SMOS Tb (K) Difference (K) RMSE of Downscaled Tb (K) 

6th July h-pol 196.5  202.0 -5.5           12.8 

v-pol 230.8 233.3 -2.5 10.5 

10th July h-pol 212.7  208.1  4.6           11.2 

v-pol 242.5 240.7 1.8 8.8 

However, because only 2 days of coincident PLMR and ASAR data are available, the BC parameter estimated 
previously using time-series de-biased SMOS Tb and ASAR σhh data were used in the analysis that follows. 
Consequently, the aggregated PLMR Tb at 40 km were only used as the value of Tbp,C  in equation (4), 
meaning that the PLMR Tb at 1 km resolution collected from 6th and 10th July are first aggregated to 40 km, 
and then downscaled by 1 km ASAR backscatter σhh to 1 km, 4 km and 10 km respectively, using the SMOS 
derived estimates of BC (3.11 at h-pol and 1.05 at v-pol).  

As mentioned before, PLMR and ASAR have 
different characteristics in frequency band, 
polarization and incidence angle, and their 
mappings over SMAPEx area on 6th July are 
shown in Figure 4. It can be found that in the 
up-right quarter of each figure, PLMR and 
ASAR show similar pattern, while in the 
remaining area those two patterns turn out to 
be approximately flipped, indicating the 
downscaled Tb will be poor due to those 
inconsistent patterns no matter what estimates 
of BC are. Accordingly, detailed downscaled 
Tb and evaluation of the feasibility of the 
downscaling algorithm are as follows:  

 
Figure 5. Downscaled Tb at v-pol on 6th July in SMAPEx domain: at 1 km, 4 km and 10 km resolution. 

Figure 3. Variation of BC in 16 smaller areas 
with a 10 km×10 km size within the SMAPEx 

area 

Figure 4. PLMR Tb at v-pol and ASAR data on 6th July 
in the SMAPEx study area 
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Comparing values of PLMR Tb at each polarization between the two days shows a clear increase in 
brightness temperature on 10th July (illustrated in Table 3), which implies a drying of the soil and/or increase 
in soil temperature. Meanwhile, ASAR data show a decrease in average backscatter on 10th July. With 
respect to the downscaled Tb, a similar drying tendency as PLMR Tb turns out from 6th  to 10th July.  

Table 3.  RMSE of downscaled Tb obtained by merging PLMR and ASAR data on 6th and 10th July 
Date Pol. Aggregated 

PLMR (K) at 40 
km resolution 

Aggregated 
ASAR (dB) at 

40 km resolution 

Aggregated 
Downscaled Tb (K) 
at 40 km resolution 

RMSE (K)                          
at 1 km 

resolution 

RMSE (K)                                                        
at 4 km 

resolution 

RMSE (K)                                                  
at 10 km 

resolution 

6th July h-pol 196.5  -10.7 196.4 11.7 9.6 7.8 

v-pol 230.8 230.8 10.3 8.5 6.9 

10th July h-pol 212.7  -11.2 212.4 10.0 7.6 6.1 

v-pol 242.5 242.4 8.6 6.7 5.2 

Values of RMSE given in Table 3 show an improvement from 1-km to 10-km resolution for both days. 
Downscaled Tb data at 1-km resolution are the results from implementation of this downscaling method, 
while downscaled Tb data at 4 km and 10 km resolution have used ASAR data averaged to 4 km or 10 km 
resolution, respectively. 

In comparison with the de-biased SMOS results (Table 2), the aggregated PLMR data used here have a better 
performance. For example, comparison of the results for 6th July shows an RMSE improvement of 
approximately 2 K. Moreover, the downscaled results at v-pol are better than h-pol. Compared with the 
correlation of Tbh and  σhh, Tbv and  σhh have a better linear relationship, thus indicating it is more suitable for 
application in this downscaling algorithm. However, the accuracy of downscaled results still suffer from a 
single polarization of ASAR data, and results are expected to improve for application with vv-pol and cross-
pol backscatter.  

All of the results above have been based on a BC value derived from de-biased SMOS and ASAR data, which 
is 3.11 at h-pol and 1.05 at v-pol, respectively. In order to test the sensitivity to this parameter, the 
downscaling method is repeated with a “calibrated” BC, obtained by minimising the RMSE between 
downscaled and observed Tb at 1 km resolution. The calibrated value of BC, expected to obtain an optimal 
downscaled Tb, is estimated as 1.65 at h-pol and 1.05 at v-pol (dashed coloured lines in Figure 2). While the 
value at h-pol is obviously different to that determined earlier in Figure 2, the resultant RMSE is not 
considerably better: at 1 km the RMSE is 11.4K at h-pol and 10.2K at v-pol on 6th July, and 9.9K at h-pol 
and 8.6K at v-pol on 10th July. 

5. DISCUSSION AND CONCLUSION 

The objective of this study was to test the feasibility of an existing downscaling approach, using operational 
SMOS and ASAR datasets. It is shown that the accuracy of the downscaling approach is primarily 
determined by the pattern agreement of the radar and radiometer observations, as imposed by the BC 
parameter. In addition, the downscaled Tb accuracy relies to a large extent on the accuracy of the radiometer-
based coarse resolution (40 km) Tb inputs, as demonstrated by comparing inputs from SMOS and aggregated 
PLMR. Moreover the C-band ASAR σhh data used in this study indicates little potential for downscaling, 
confirming earlier results that backscatter at hh-pol has poor correlation with Tb (vv-pol is expected to yield 
better results), greatly limiting the effectiveness of this downscaling algorithm. 

In this paper the value of BC is estimated using regression on pairs of Tb and σ data at the same resolutions 
collected within the SMAPEx area. The robustness of BC is subjected to the number of available Tb and σ 
data pairs. Future studies will aim at improved parameterization of BC using more pairs of radar and 
radiometer data for linear regression, which is expected to perform better for downscaling. The variation of 
BC with seasons is illustrated, and therefore BC must be applied based on the specific land surface conditions, 
in order to ensure the accuracy of downscaled results. Another issue pertaining to BC is the size of study area. 
Since BC is related to vegetation type, surface roughness, land management and other factors, the robustness 
of its value is affected by the heterogeneity of the study area. At the beginning of this study, BC was assumed 
to be time-invariant and homogenous in the entire area, which increased the errors obtained with the 
downscaling algorithm. It is envisioned that a significant improvement could derive from adjusting the BC 
parameter using high-resolution ancillary data on vegetation in future studies, which might improve the 
results of the downscaling to some degree. 
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The error of the downscaled Tb can be reduced by averaging to a larger scale, e.g. 4-km and 10-km, mainly 
because the speckle noise from ASAR is decreased during averaging, as well as the patchiness in vegetation. 
In conclusion, results from this study indicate that SMOS Tb and ASAR σhh data generally do not meet the 
accuracy requirement for this downscaling algorithm, resulting in a downscaled RMSE of not better than 5K 
at 10km reslution. Future studies will focus on evaluating the viability of this proposed downscaling 
algorithm, by applying more accurate radar and radiometer data in specific month/season with similar 
frequencies, polarizations and incidence angle to SMAP. To achieve better downscaled results, studies will 
also be carried out on parameterization of BC using auxillary vegetation characteristics. 
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